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Introduction
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* Medical imaging tasks often require simultaneous ¢ Address tradeoff between annotation burden and

frame detection and video classification. interpretability
 Example: Lung ultrasound detection of
consolidation and pleural effusion

* Provide simultaneous detection and classification
on medical videos while requiring very limited
frame-level supervision
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e Standard detection models require frame-by-

frame annotations for training, which are costly. * |Introduce a mechanism to aggregate feature

Method Interpretability Frame annotation burden ] )
representation from spatial to temporal

Direct video classification Poor None

Frame-based detection Good Significant * Direct video classifiers do not provide localization,
Ours Good Minimal which limits clinical interpretability. * Demonstrate real-world effectiveness on a multi-

center clinical lung ultrasound dataset

Methods

P ro p ose d fra mewor k . Frame-level detection (spatial) Video-level tracking (temporal) Tracklet-based cropping Tracklet classifier

1. Frame detection (weakly semi-
supervised)!:
o Stage 1, “Burn-in”: supervised initialization
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2. Aggregate predictions along tracklets:
o Group predicted boxes into tracklets
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4. Video classification:

o Based on highest tracklet confidence Figure 1. Detection and video classification framework. The method aggregates boxes from a 2D frame detector into tracklets, which are classified using a

second-stage (CNN+LSTM) network. Both the frame detector and tracklet classifier are trained via weak semi-supervision using frame- and video-level labels.

Experiments
Data: Table 1. Frame detection and video classification results for consolidation and pleural effusion.
* Mu.ltl-center dataset of 7,712 ultrasound videos from 420 Approach Frame Video/tracklet # of FLL # of VLL Detection Classification
patients at 8 sites (60 to 180 frames per video). PP detector classifier videos videos (Test AP,) (Test AUC)
* Training, validation, and testing datasets separated by subject: Direct N.A. EfficientNet+LSTM 0 6677/9836 N.A. 0.748 /0.809
video N.A. MobileNet+LSTM 0 6677 /9836 N.A. 0.870/0.910
_ Conolaate S| e classifier N.A. CNN+LSTM(video) 0 6677 / 9836 NA. 0.909 / 0.894
99 f abeled vid 20 f abeled vid Detector- STN Uninorms 99*/80* 6677 /9836 N.A. 0.886/0.916
Training rame-iabeled vVideos, rame-iabeled videos, based WSS Yolo+TR MaxConf 99/80  6677/9836 0.345/0.334  0.880/0.893
6,677 video-labeled videos 9,836 video-labeled videos video WSS Yolo+TR+FLT CNN+LSTM(tracklet)  99/80 6677 /9836 0.381/0.365 0.936/0.938
Validation 337 videos 273 videos classifier WSS Yolo+TR MaxConf 14** 6677 0.318 0.905
WSS Yolo+TR+FLT CNN+LSTM(tracklet) 14** 6677 0.369 0.927
Testing 599 videos 233 videos
Table 2. Ablation experiments for consolidation frame detection and video classification.
Experiments: “ - ficati
pe ents Frame detector Video/tracklet classifier # (?f FLL 7 O.f VLL Er)etecAtlI?n Clasmﬁ[:atlon
 Base classification model: CNN + LSTM videos videos  (TestAPsq)  (Test AUC)
. . . 5 FS Yolo Max conf 99 0 0.257 0.845
* Base detector-based classification model: STN WSS Yolo Max conf 99 6677 0.329 0.332
* Reduce ROI: bypass detection step = directly use whole image to WSS Yolo + TR Max conf 99 6677 0.345 0.880
: WSS Yolo + TR CNN+LSTM (Single frame) 99 6677 0.345 0.905
tr.am and evaluate traCkIetN.Et (Table 1, row 3) o . WSS Yolo + TR CNN+Dense (Subsampled tracklet) 99 6677 0.345 0.921
* Simple rule-based aggregation: bypass tracklet classifier = classify WSS Yolo+ TR~ CNN+LSTM (Subsampled tracklet) 99 6677 0.345 0.936
video based on max detection confidence (Table 2, rows 2 and 3) WSS Yolo + TR + FLT CNN+LSTM (Single frame) 99 6677 0.371 0.905
. Remove tracker: bvpass tracking step = directlv use frame WSS Yolo + TR + FLT CNN+Dense (Subsampled tracklet) 99 6677 0.366 0.921
- DYp & Slep Y WSS Yolo + TR + FLT CNN+LSTM (Subsampled tracklet) 99 6677 0.381 0.936

detection confidences for video classification
. . . WSS: weakly semi-supervised; FS: fully-supervised; TR: tracking; FLT: filtering detection results based on tracklet
° Remove tem poral agg regatlon by trackletNet. Cla SS Ify tra Ckl et predictions; FLL: frame-level labeled; VLL: video-level labeled;

based on sin g| e (ce ntra |) frame (Ta ble 2, row 4) *. frame-level bounding box label was used to create the frame-level class label; **: experiments performed on

consolidation dataset only
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Figure 2. Examples of videos correctly classified by trackletNet but not by frame detector. White: ground-truth; Orange: detector confidences; Green: tracklet confidences.
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